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Abstract

Spectral Computed Tomography (CT) is an emerging technology that enables to estimate
the concentration of basis materials within a scanned object by exploiting different photon en-
ergy spectra. In this work, we aim at efficiently solving a model-based maximum-a-posterior
problem to reconstruct multi-materials images with application to spectral CT. In particular,
we propose to solve a regularized optimization problem based on a plug-in image-denoising
function using a randomized second order method. By approximating the Newton step using
a sketching of the Hessian of the likelihood function, it is possible to reduce the complexity
while retaining the complex prior structure given by the data-driven regularizer. We exploit
a non-uniform block sub-sampling of the Hessian with inexact but efficient Conjugate gradi-
ent updates that require only Jacobian-vector products for denoising term. Finally, we show
numerical and experimental results for spectral CT materials decomposition.

1 Introduction

Spectral Computed Tomography (CT) is a developing technique for diagnostic and therapy in
medical imaging which can gather enhanced physical parameters information compared to con-
ventional CT by exploiting the dependence of the attenuation coefficients of an object with distinct
photon energy spectra. This information leads to the estimation of images of basis materials [1],
which can be used for quantitative imaging [2], reducing beam hardening artifacts and improving
the contrast-to-noise ratio [3]. Recently, spectral CT with photon counting detectors has attracted
increasing interest.

In contrast to conventional transmission CT, photon counting detectors can resolve the X-ray
photon energy and allow to acquire registered energy selective images [4] with effective reduction
of the electronic readout noise, which is of crucial importance for low-dose applications. However,
material decomposition algorithms typically lead to a degradation of the signal-to-noise ratio
(SNR) and noise amplification [5] compared to the unprocessed spectral images. This is still a
fundamental problem of spectral CT since it limits the usability of material selective images.

Most spectral CT algorithms separate the process of material decomposition and image re-
construction. Material decomposition is either performed in the projection space prior to image
reconstruction [6, 7] or an image based decomposition algorithm is applied after reconstructing the
images corresponding to different photon energy spectra [8, 9, 10, 11] by using tensor factorization
[12] or dictionary learning [13]. Separating these steps is sub-optimal because the full statistical
information contained in the spectral tomographic measurements cannot be exploited. Statistical
iterative reconstruction (SIR) techniques provide a data consistent approach to obtaining material
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selective images using a statistical model of the projection measurements and incorporating prior
knowledge about the reconstructed material images. Unfortunately, the loss function induced by
the forward model which directly maps the expected spectral projection measurements and the
material images is non-convex and difficult to minimize; convex approximations of the loss func-
tion such as convex-concave techniques [14, 15, 16] or semi-empirical models [17, 18] have been
proposed but suffer of high computational cost because of the double-loop nature of the solver.

The main challenges which are attracting considerable interest are related to the fact that
the image to be recovered lies in an high-dimensional space and to leverage more sophisticated or
learned data-dependent priors which are needed since the estimation problem is generally ill-posed.
Regarding the issue of reducing the per-iteration computational cost to solve the reconstruction
in the high-dimensional setting, numerous first order solvers which leverage random numerical
linear algebra have been deployed in different machine learning and imaging applications. Well
established algorithms like Stochastic Gradient Descent (SGD) [19, 20], order subsets [21] and Al-
ternating Direction Method of Multiplier (ADMM) have gained considerably attention in spectral
CT [22, 23]. Unfortunately, the iteration complexity of first order methods relies significantly on
the condition number of the problem like SGD which has a sub-linear convergence rate to only
a neighborhood of the solution [24]. Instead, the information related to the curvature is decisive
to improve the convergence by reducing the condition number and to obtain physical meaningful
and accurate quantitative estimation. Therefore, accounting for a greedy selection of parameters
and step-size is crucial to design first-order algorithms for imaging like CT image reconstruction
[21, 25]. Deterministic second order methods for solving regularized optimization problems with
Generalized Linear Models (GLM) have been widely studied [26, 27] but despite the superior,
linear or super-linear, convergence rate of Newton methods compared to first order methods one
weakness relies on the high computational cost of calculating the Hessian matrix in high dimen-
sional imaging application [26, 27]. The Newton method requires at each iteration to solving
exactly a linear system with complexity O(mn2), with m the dimension of the measurement vec-
tor and n the dimension of the input vector, and therefore it is practical only when the dimension
n is low or if the Hessian can be factorized in time linear to the input dimension, like by the fast
Fourier Transform (FFT) [28]. Instead inexact methods solve approximately the linear system
by iterative algorithms like Conjugate Gradient (CG) which does not require to calculate the full
Hessian matrix but only operate through vectors products [29]; this is particularly appealing in
imaging systems like CT where there are fast implementations of the operator that represents the
physical forward model.

In this work, a new second-order algorithm for statistical iterative material decomposition
(Denoising-IHS) is developed which enjoys an improved accuracy and computation trade-off. We
propose a computational efficient quantitative estimation with second order and parameters-free
methods based on randomized linear algebra and regularization induced by denoising. We exploit
the recent development of randomized sketches [30] and sub-sampling methods [31] for the Hessian
matrix to improve upon the computational cost-per-iteration. Unfortunately, these methods are
efficient in the regime where the measurement dimensionm is much larger than the input dimension
n, i.e. m ≫ n [32], since the theoretical bound on the embedding of the sketched Hessian matrix
requires a number of samples of order O(n). Furthermore, these methods have been mainly
analyzed for minimizing smooth and convex cost function and the interesting case of using denoiser-
based regularizers has not been deeply studied. Therefore, we aim at developing an algorithm for
spectral CT model where the dimension of the measurements is of the same order as the dimension
of the image to be reconstructed, i.e. m ≈ n and exploit denoising function to capture the complex
structure of the material images to be reconstructed.
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1.1 Related works

Important contributions related to sketching methods for solving optimization problems refer
to the Newton-Sketch algorithm [33] where the Newton equations are solved using an unbiased
estimator of the true Hessian obtained by performing a dimensionality reduction using random
sketching matrices. Different types of sketching such as Sub-Gaussian matrices, Hadamard or
Fourier transforms, sparse Count Sketch matrices can be employed and have been analyzed [33].
Furthermore, sub-sampling Newton methods [34, 35, 36, 37] are based on random row sub-sampling
according to a uniform or non-uniform probability distribution [36, 38, 31]. It is interesting to
note that random matrix sub-sampling schemes can be considered a particular type of sketching
and they are more efficient especially in imaging problems where the linear forward model has a
precise, deterministic structure, like the Random transform for CT imaging. Furthermore, since
the Radon matrix A is an high dimensional tall and sparse matrix, the count sketch might be
efficient because of O(nnz(A)) multiplication complexity, where nnz(A) stands for the number
of non-zero elements of the matrix A. Unfortunately, the count sketch requires a bound on the
sketch size of order O(n), with n the dimension of the vectorized image input, which is practically
useless in CT scenarios where n is of the same order of the number of measurements m.

Our main interest is to develop a non-uniform sub-sampling Newton algorithm for CT imaging
by incorporating data-dependent regularizer which is becoming state-of-the art in model-based it-
erative reconstruction. In imaging applications where the input prior is difficult to model, powerful
regularization techniques are based on data-driven models or by exploiting denoising functions,
like the Plug-and-play (PnP) approach [39] or the regularization by denoising (RED) [40, 41, 42].
It is interesting how both approaches allow to integrate in the iterative solver either deterministic
denoisers, like BM3D [43], NLM, TV or deep learning CNN-based denoisers [44]. The RED ap-
proach is based on an explicit regularization term [40] and scalable first-order solvers for the RED
problem in high dimensions have been proposed [45]. As far as the authors are aware, the RED
approach has been investigated with first order solvers but not with Newton methods mainly be-
cause by default it would require to explicitly generate the Jacobian matrix of the denoiser which
is infeasible in high-dimensions.

1.2 Main Contribution and Relation to Existing Works

In this work, we develop a second order method (Denoising-IHS) which combine the iterative
sketching [33] for the log-likelihood function and the RED regularization which can be implemented
by a generic denoiser through the score matching formulation with application to spectral CT
material decomposition. We propose an effective choice for both the sketching scheme and the
solver in order to reduce the computational complexity for imaging problems characterized by
physical-based convolutional operators.

The overall algorithmic time complexity is T = nouter · (tsamp + tsolve) where tsamp is the time
needed at each iteration to construct the sketching, tsolve is the time to solve the linear sub-
problem inexactly, and nouter is the total number of iterations which is affected by the convergence
rate. Considering tsamp, taking inspiration from [37], we develop a random non-uniform sub-
sampling of the measurement where the probabilities are calculated according to a penalized
block-leverage score metric. While penalizing the ridge leverage scores allows to reduce the sketch
size with provable convergence, this metric exploits the CT measurements block structure which
is defined as a product of the number of views and the number of detectors. This means that we
randomly sub-sample over the acquired angles and the ridge leverage score associated with each
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view is calculated over a block constituted by the number of detectors. We take advantage of
the convolutional structure of the Radon transform to estimate the leverage scores through the
Fourier decomposition and reduce the complexity to O(n log n). Regarding the computational
time to solve the sub-problem tsolve, we employ the CG algorithm since it does not require to
store any gradient or Jacobian matrices and all operations can be performed using implicitly
operators instead of matrix form. We develop a method to estimate the denoiser’s Jacobian
product through automatic differentiation for CNN-based denoisers. Finally, for the term nouter,
we provide convergence analysis of the proposed method.

1.3 Notation

Matrices or discrete operators and column vectors are written respectively in capital and normal
boldface type, i.e. A and a to distinguish from scalars and real-valued variables written in normal
weight. (·T ) refers to the transpose of a matrix and 1 refers to a vector of ones. Non-random
quantities and random realizations are not distinguished typographically while random variable
are written with capital letters. The conditional probability density function of y given x is
denoted by p(y|x). A Gaussian random variable x with vector mean a and isotropic variance b is
denoted by x ∼ N (a, bI). 〈a,b〉 = bTa refers to the vector inner product.

1.4 Structure of the Paper

The remainder of this paper is structured as follows: in Section 2, the spectral CT mathematical
model with the Gaussian approximation of the noise is described and Section 3 analyses the
optimization problem together with a review of the Hessian sketching Newton method and the
formulation of the regularization by denoising approach. The proposed algorithms is presented in
Section 4 which contains the details of the denoising-based regularizer, the spectral CT data loss
and an analysis of the CG inner solver. The further sections describe the crucial blocks of the
Denoising-IHS algorithm: the approach to estimating the denoiser directional derivatives needed
in the CG solver is described in Section 5 while the sketching strategy based on block leverage
scores sub-sampling of the Hessian matrix of the data loss function is presented in Section 6.
Finally, in Sections 7 and 8 we show the numerical simulation and real acquisition on different
sets of images and we assess the algorithm in terms of accuracy and computation.

2 Spectral X-ray CT Model

In this Section, we describe the CT physical measurement process in the continuous domain with
the spectrum of the X-ray source beams composed by different energy intervals. The spectral
X-ray mathematical model is based on the Beer’s law which provides the X-ray intensity after
transmission, pki of the i-th ray at the k-th energy interval (bin) as follows

pki =

∫

E

Sk(E)e
−

∫
l∈Li

µ(~κ(l),E)dl
dE + ηki ,

{
i = 1, 2, . . . , Nd ×Np,

k = 1, 2, . . . , Nb,
(1)

where pki is the X-ray intensity of the i-th detector pixel in the k-th detector bin, E is the photon
flux density, Nd is the number of detector pixels, Np is the number of projections, µ(~κ(l), E) denotes
the linear attenuation coefficient that is related to the position function ~κ(l) and the energy level
E, ηki is the Gaussian error term for the i-th element in the k-th energy bin and Sk(E) represents
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the photon flux density for the k-th detector bin, which is the number of incident photons at the
energy E in the k-th energy window.

In the discrete domain, we map the continuous spatially and energy dependent distribution
µ(~κ(l), E) ∈ L2(R) by using a basis material decomposition for representing the object

µ(~κ(l), E) ≈
Nm∑

m=1

cm(E)
Nv∑

j=1

φj(~κ)xj,m (2)

where cm(E) indicates the linear attenuation coefficient of the m-th material at the energy level
E, φj(~κ) defines the j-th among Nv basis functions associated with a discrete sampling on a√
Nv ×

√
Nv Cartesian grid, Nm represents the number of basis materials and xj,m is the weight

fraction of the m-th material in the j-th image voxel/pixel. According to the basis material
parameterization in Eq. (2), the line integral in Eq. (1) becomes a summation:

∫

l∈Li

µ(~κ(l), E)dl ≈
Nm∑

m=1

cm(E)

Nv∑

j=1

xj,m

∫

l∈Li

φj(~κ(l))dl =

Nm∑

m=1

Nv∑

j=1

ri,jxj,mcm,e (3)

where ri,j represents the i, j element of the system matrix describing the discrete summation along
the i-path from source through object at pixel position j onto each detector. Repeating this over
all lines defines the full view linear tomographic system matrix R = [rij ]; by physical design, R
is a sparse and non-negative matrix with dimensions NdNp ×Nv. For a discrete set of energies of
dimension Ne, the discrete model (1) can be written as

pki =
Ne∑

e=1

ske
∑Nm

m=1

∑Nv
j=1

ri,jxj,mcm,e + ηki (4)

The source spectrum is modeled as a vector s ∈ R
Ne×1 with non-negative entries and the detector

response is a positive matrix D ∈ R
Nb×Ne whose dimension is the product of the number of

bins Nb and the number of discrete energies Ne. Therefore, the spectrum for all the energy bins
b = 1, . . . , Nb is the matrix obtained as Hadamard point-wise product S = D⊙ s ∈ R

Nb×Ne . Both
the source spectrum and the detectors response matrix are assumed to be known.

In matrix notation,X = [x1, . . . ,xl, . . .xNm
] ∈ R

Nv×Nm denotes the matrix obtained as columns
concatenation of the vectorized image xl of the l = 1, . . . , Nm basis materials. Therefore, ri,j, and
cm,e are collected in a matrix form and pki , s

k
e , η

k
i are concatenated with respect to their energy

windows. The corresponding matrix equation of (4) can be represented as

P = exp
(
−RXCT

)
S+N (5)

with C a matrix of the size Ne ×Nm where each entry corresponds to ce,m, the linear attenuation
coefficient of the energy e, and the m-th material. We vectorize the nonlinear matrix equation (5)
on both sides and linearize to avoid a tensor form for computing second order derivatives and we
follow the mathematical model derived in [46]. In the forward problem, we use the full spectrum,
and the matrix S is rectangular while for solving the inverse problem, we choose the average in
each energy window to represent the corresponding energy spectrum, so Nb = Ne and the matrix
S in is a nonsingular diagonal matrix. Therefore, we multiply S−1 and vectorize on both sides of
(5) and using the properties of Kronecker products we obtain

(
S−T ⊗ I

)
p = exp

(
− (C⊗R)x

)
+
(
S−T ⊗ I

)
n (6)
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where p = vec (P), x = vec (X) and n = vec (N). Denoting p̃ =
(
S−T ⊗ I

)
p and ñ =

(
S−T ⊗ I

)
n

and taking the logarithm, we have log (p̃− ñ) = − (C⊗R)x.
Using a first order Taylor expansion at p̃, log (p̃− ñ) = log (p̃) − diag (p̃)−1

ñ + O (‖ñ‖2), we
obtain the following approximation y ≈ (C⊗R)x− diag (p̃)−1

ñ where y = − log (p̃). Assuming
Gaussian noise n ∼ N

(
0, diag(p)

)
, we have

y|x ∼ N
(
(C⊗R)x,Σ

)
(7)

where the inverse covariance matrix Σ−1 is expressed as

Σ−1 = diag (p̃)
(
S⊗ I

)
diag (p)−1 (

ST ⊗ I
)
diag (p̃) (8)

P is a matrix which represents the number of photons of each energy window in the corresponding
column and each element of P is a positive integer. From expression (8), we can see that the Σ−1

is diagonal since we have assumed that S is diagonal.
We consider the MAP estimation problem for the spectral X-ray CT model with Gaussian

approximation. Given the measurement vector y ∈ R
m of dimension m = Nd ·Np ·Nb, we consider

the data-fit loss function f(x,y) : Rn × R
m → R as a measure of the distance between the input

parameter vector x ∈ R
n, of dimension n = Nv ·Nm, and the measurement vector y, with m > n.

The loss function is given by the following empirical negative log-likelihood (NLL)

f(x,y) = −
m∑

i=1

log p(yi|x) ≈ 1

2

m∑

i=1

σ−1
i

(
aix− yi

)2
=

1

2
‖Ax− y‖2

Σ−1 (9)

where A = C⊗R. Given the likelihood function in Eq. (9) with x ∈ R
n
+, it results that

∇xf(x,y) = ATΣ−1 (Ax− y) , ∇2
x
f(x,y) = ATΣ−1A (10)

It is important to note that in the region of physical interest, i.e. aTi x ∈ R+, ∇2
x
f(x,y) is bounded.

3 Optimization problem

The MAP estimator can be formulated as the following optimization problem

x̂ = arg min
x∈Rn

+

f(x,y) + ρσ,ν(x) (11)

where f(x,y) = − log p(y|x) represents the likelihood loss function as described in Eq. (9) and
ρσ,ν(x) is the regularization term which defines a prior ρσ,ν(x) = − log p(x, ν) on the vector x to be
estimated, with ν the noise level. In the following, we will consider the constrained minimization
over the set of non-negative vectors x ∈ R

n
+. We focus on a particular non-convex regularizer

which can be explicitly defined according to a denoising (RED) function dependent on a set of
parameters σ. The regularization term and the gradient can be expressed as

ρσ,ν(x) =
1

2ν
xT
(
x−Dσ(x)

)
, ∇ρσ,ν(x) =

1

ν

(
x−Dσ(x)

)
(12)

if the denoiser Dσ(·) is locally homogeneous, i.e. (1+ ǫ)Dσ(x) = Dσ ((1 + ǫ)x) , ∀x, ǫ > 0 and the
its Jacobian is symmetric, J[Dσ(x)] = J[Dσ(x)]

T . When the denoiser does not follows the above
conditions, the relationship between ρσ(x) and the gradient expression in Eq. (12) does not hold.
In the following Section 3.1, an interpretation of RED for generic denoisers is summarized which
is based on the score-matching by denoising framework [41].
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3.1 Denoising Score Matching

In medical imaging applications, the true prior p(x) is not available and therefore it is not
possible to compute directly the MMSE estimator DMMSE,ν(·). Since calculating DMMSE,ν is
infeasible in high dimensions, the main idea is to approximate the optimal MMSE estimator
by a generic denoiser, Dσ(·) parametrized over σ, even for denoisers not locally homogeneous
or with non-symmetric Jacobian. By utilizing p(x, ν) as prior of x for the regularization term
ρ(x) = − log p(x, ν) in (11), it is necessary to evaluate the expression for ∇xρ(x) = ∇x log p(x, ν)
and ∇2

x
ρ(x). Instead, using an efficient denoiser on the class D , {Dσ : σ ∈ Σ}, although an

analytic expression for p(x, ν) is either not available or complex to handle, from an algorithmic
perspective the prior is not needed but only the gradient and its Jacobian. Therefore, we exploit
the approach based on approximating the score instead of the prior directly by invoking the con-
nection between denoising and the score, i.e. the gradient of the log-prior, and its Hessian [47]. It
was shown in [48] that if we choose a function such that

θσ(x) =
Dσ(x)− x

ν
,

∂θσ(x)

∂x
=

1

ν

(
J[Dσ(x)]− I

)
(13)

where J[Dσ(x)] is the Jacobian matrix of the denoising function of dimension n× n, then for any
Dσ and x, the score-matching error is connected to the denoiser approximation error as follows

∥∥∥Dσ(x)−DMMSE,ν(x)
∥∥∥
2

=
∥∥∥θσ(x)−∇x log p(x, ν)

∥∥∥
2

=

∥∥∥∥
∂θσ(x)

∂x
−∇2

x
log p(x, ν)

∥∥∥∥
2

(14)

It is important to stress that the equivalence between Eq. (13) and (14) holds also in the case
where the parameter vector of the denoiser σ is not optimal. The Jacobian matrix J[Dσ(x)] of
dimension n × n is computationally prohibitive to calculate and store at each iteration t of the
solver in high dimensions. In Section 5 we propose a way to approximate the Jacobian-vector
products required within the proposed iterative sub-sampled Newton solver.

3.2 Review of the Newton Method

In this section we build the analysis of the sub-sampled Newton method by first summarizing the
Newton method. Let g : Rn → R be a closed, convex, and twice-differentiable function that is
bounded below. Given the current iterate xt ∈ C, the Newton method generates a new iterate
xt+1 by performing a constrained minimization of the second-order Taylor expansion

xt+1 = argmin
x∈C

[
1

2
〈x− xt,∇2

xtg(xt,y)(x− xt)〉+ 〈∇xtg(xt,y),x− xt〉
]

(15)

where for the traditional Newton’s method ∇2
xtg(xt,y) represents the full n × n Hessian matrix.

In the following derivations, we simplify the notation of the gradient and the Hessian with ∇g(xt)
and ∇2g(xt) respectively, hiding the dependence over y. By setting the gradient respect to xt

equal to zero, it follows the fixed-point update for the exact full Newton’s method

∇2g
(
xt
)(
x− xt

)
= −∇g

(
xt
)

⇒ xt+1 = xt − αt
[
∇2g

(
xt
)]−1∇g

(
xt
)

(16)

The two forms of updates presented in (16) highlight that 2 different types of solvers can be
employed; in the first case, we solve a linear system in order to estimate the vector pt = x − xt
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and this is generally obtained by using the CG algorithm. Alternatively, it is possible to directly
invert the square n × n Hessian matrix. The step-size αt in (16) can be assumed constant,
αt = 1, ∀t ∈ N.

In the following Section, we describe the proposed Denoising-IHS algorithm which uses a
stochastic approximation of the Hessian ∇2g(xt) in order to compute pt with reduced compu-
tational cost, instead of calculating an n × n Hessian matrix and solving the linear system in
(16) exactly which would be remarkably expensive in terms of time. We assume that the gradi-
ent ∇g(xt) is computed exactly and the Hessian is approximated by random projection to lower
dimension s < n by applying a sketching matrix St ∈ R

s×n such that 1
s
E
[
(St)TSt

]
= In.

4 Proposed Denoising-based Sub-sampled NewtonMethod

The Denoising-IHS algorithm minimizes the original MAP-driven regularized composite cost func-
tion of the form g(x) = f(x)+ρσ(x) in Eq. (11) and we utilize a partially sketched Newton update
which means that a sketch of the Hessian ∇2

x
f(x,y) is performed while retaining the exact form of

the Hessian associated with the regularizer, i.e. ∇2ρσ(x). The reason behind this choice is while
it is possible to reduce the computational complexity related to the loss function by using fast
non-uniform rows sampling, for generic black-box denoising function the computational cost of
applying the sketching to the regularizer is higher than using the original function. The algorithm

assumes that the square root of the Hessian matrix of dimension m × n, indicated as [∇2f(x)]
1

2 ,

can be computed for the CT model in (10), it follows that [∇2f(xt)]
1

2 = Σ− 1

2A

being Σ a diagonal matrix. The sketched Hessian of the loss function f(x) is constructed as

Ht
f(x

t) =
(
St
[
∇2f(xt)

] 1

2

)T
St
[
∇2f(xt)

] 1

2 = G(xt)TG(xt), St ∈ R
s×n (17)

with G(xt) = St [∇2f(xt)]
1

2 , while the full Hessian of the denoising-based regularizer is denoted
by Ht

ρ(x
t) = ∇2ρσ(x

t) with Ht
ρ(x

t) � 0 a positive semi-definite matrix. Eq. (17) represents an
unbiased estimator for the full Hessian of the loss

Et

[([
∇2f(xt)

] 1

2

)T
(St)TSt

[
∇2f(xt)

] 1

2

]
= ∇2f(xt) (18)

where the expectation is taken over the iteration index t conditioned over the random sketches
selected at previous iterations [1, . . . , t− 1]. The splitting leads to the partially sketched update

xt+1 = argmin
x∈C

[
1

2
(x− xt)THt(xt)(x− xt) + 〈∇g(xt),x− xt〉

]
(19)

Ht(xt) = Ht
f(x

t) +Ht
ρ(x

t) =
(
St[∇2f(xt)]

1

2

)T
St[∇2f(xt)]

1

2 +∇2ρσ(x
t)

By substituting into (19) the definition for the loss in (9) and the denoising-based regularizer in
(13), the expressions for the gradient and the Hessian become

∇g(xt) = ∇f(xt,y) +∇ρν,σ(x
t) = ATΣ−1

(
Axt − y

)
+

1

ν

(
Dσ(x

t)− xt
)

G(xt) = St[∇2f(xt)]
1

2 = St
[
Σ− 1

2A
]

Ht(xt) = G(xt)TG(xt) +
1

ν

(
J[Dσ(x

t)]− I
)

(20)
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The update is xt+1 = xt + pt where pt is obtained as solution of the system of equations

Ht(xt)pt = −∇g(xt) (21)

We consider to solve the system (21) approximately using the Conjugate gradient method. We
focus on the analysis of the accuracy of the solution and the complexity. The inner update is

xt+1 = xt + pt
r (22)

where pt
r is the approximate solution after r inner iterations of the CG solver. We consider the

case where the gradient is fully computed which is a realistic scenario in case of separable loss
function, and the Hessian is non-uniformly sampled. To perform an analysis of the complexity of
the Sketch Newton-CG method, we remind that for a symmetric positive definite linear system
the convergence of CG is not uniform but depends on the difference between the minimum and
maximum eigenvalues. In detail, the convergence rate of the CG method varies at every iteration
depending on the spectrum {λ1 ≤ λ2 ≤, . . . ,≤ λn} of the positive definite matrix Ht(xt). After r
steps of the CG method applied to the linear system in (21), the iterate ptr satisfies

‖pt
r − pt

∗‖2C ≤
(
λn−r − λ1

λn−r + λ1

)2

‖pt
0 − pt

∗‖2C, C = Ht(xt)

where pt
∗ indicates the exact solution and ‖x‖2

C
, xTCx. The linear CG algorithm allows to solve

the system (21) using only matrix/operator-vector products with Ht(xt). therefore, we use CG
as an Hessian-free inner solver which does not require to store the full n × n Hessian matrix. It
is possible to obtain sketched Hessian-vector products by performing two matrix-vector products
with respect to the sketched square-root Hessian. In particular, we compute for each inner iteration
i ∈ [1, . . . , r] of the CG solver the following variable vector

vi = Ht(xt)pi =

(
G(xt)TG(xt) +

1

ν

(
J[Dσ(x

t)]− I
))

pi (23)

using an auxiliary vector z and performing two steps as follows

zi = G(xt)pi, vi = G(xt)Tz+
1

ν
J[Dσ(x

t)]pi −
1

ν
pi (24)

Furthermore, by using the CG solver the matrix Ht(xt) is fixed through the inner iterations (being
t the index of the outer iteration as in Algorithm 1 and i the index of the CG solver). In the
following, we will not explicitly indicate the index i associated with the vector p for notation
simplicity. Since Ht(xt) depends by the Jacobian of the denoiser, as shown in (20), it would be
unfeasible to use gradient based solvers which requires to calculate the Jacobian at each inner
iteration. Instead, with CG only directional derivatives of the denoiser, i.e. J, are needed to be
computed and not the full Jacobian; in Section 5 we present fast methods to estimate accurately
the directional derivative of learned CNN-based denoisers.
Although in the worst case, CG will require n iterations to converge (thus requiring the evaluation
of n products Ht(xt)pt), the behavior CG can achieve significant progress in the minimization of
the objective function after a reduced number of iterations r. The following Theorem outlines
that the proposed Denoising-IHS algorithm 1 can achieve quadratic convergence, with constants
C1, C2, C3 dependent on the minimum and maximum eigenvalues of the full Hessian H̄(xt)) and
the condition number κ of the problem as defined in the proof in Appendix A

Theorem 4.1. Let xt be the iterates generated by the non-uniform sampling Newton-CG algorithm
with r < n CG iterations are performed. Then,

Et‖xt+1 − x∗‖ ≤ C1‖xt − x∗‖2 + (C2 + C3) ‖xt − x∗‖2 (25)
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Algorithm 1: Sub-sampled Newton method with Regularization by Denoising

Initialization: set t = 0, r0 = 0, x0 = 0, τ 0x = 1
—- Outer iterations —-
for t = 1, . . . , Tmax do

1) Compute the leverage-scores based non-uniform sampling distribution {pi}pi=1 (6.1)
2) Compute the sketched Hessian of the loss:

Gt(xt) = St[∇2f(xt)]
1

2 = St
[
Σ− 1

2A
]

3) Partial sketched Hessian:

Ht(xt) = [Gt(xt)]
T
GT (xt) + 1

ν

(
J[Dσ(x

t)]− I
)

—- Inner iterations —-
4) Solve the liner system using CG:

Ht(xt)pt = −∇g(xt)
end for

return xt

5 Denoiser directional derivative estimators

The major computational cost of the inexact Newton solver relies on the calculation at each outer
iteration t of the Jacobian matrix, of dimensions n× n, of the denoising function Dσ in Eq. (20)
whose computation is unfeasible in high dimensions. On a closed look, CG requires instead to
calculate explicitly the direction derivative J [Dσ(x

t)]pt that for the n-dimensional vector pt,can
be computed using finite differences at the cost of a single denoising evaluation as in Eq. (13)
through the following expression

J
[
Dσ(x

t)
]
pt = lim

ǫ→0

Dσ(x
t + ǫpt)−Dσ(x

t)

ǫ
(26)

Although the finite differences approach suffers from numerical instabilities and also requires the
computationally expensive evaluation of non-linear functions, there is an efficient procedure for
computing exactly the Jacobian-vector product for neural networks.

5.1 Automatic differentiation for CNN denoisers

The procedure to calculate J[Dσ(x
t)]pt is based on deriving the right multiplication of Jacobian

matrices. We denote the denoiser Dσ(x) : R
n → R

m and let p ∈ R
n be the right multiplication

vector and u ∈ R
n be a dummy variable. The left multiplication of the Jacobian matrix, i.e.

uTJ[Dσ(x
t)], can be calculated by back propagation, which is common in reverse mode automatic

differentiation packages

uT ∂D

∂xT
= uTJ

[
Dσ(x

t)
]

(27)

We exploit (27) to compute J[Dσ(x
t)]pt by defining g(u) = uTJ[Dσ(x

t)]. Since uTJ[Dσ(x
t)] is

a vector in R
n, the mapping of pt can be defined as the function g(u) : Rn → R

n. We can take
derivative of g(u) with respect to u, while providing the left multiplying vector pt:

pt ∂g

∂u
= pt

∂
(
uTJ [Dσ(x

t)]
)

∂u
= ptJ

[
Dσ(x

t)
]T

=
(
J
[
Dσ(x

t)
]
pt
)T

(28)
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6 Block Leverage Scores Sketching

We focus on sketches based on non-uniform random block rows sampling which can be easily and
efficiently implemented on GPU-based imaging operators such as CT [49]. Given a probability
distribution {pi}mi=1, we randomly sample the rows of the matrix A a total of s times with replace-
ment from the given probability distribution. The rows of S are independent and take the values
sT = ei√

pi
with probability pi for i = 1, . . . , m, where ei ∈ R

m is the i-th canonical basis vector.

The discrete probability distribution is chosen according to the ridge leverage scores.

Definition 6.1. (Ridge Leverage Scores) Given A ∈ R
m×n and a scalar λ ∈ R+, then for i =

1, . . . , n, the i-th leverage scores of A is defined as lλi (A) = aT
i (A

TA+ λI)†ai.

We consider to estimate the ridge leverage scores of the square root matrix of the Hessian ma-

trix of the loss function, i.e. B = [∇2f(xt)]
1

2 = Σ− 1

2A as defined in (10). The idea is to
adaptively penalize the leverage scores of the Hessian-related matrix B according to the noise
level estimated through the trace of the Jacobian of the denoiser based regularizer Hd

ρ. Defining

Hρ =
1
ν

(
J[Dσ(x

t)]− I
)
, we estimate the trace

Hd
ρ = Trace[Hρ] =

1

ν

(
Trace

[
J[Dσ(x

t)]
]
− 1
)

(29)

We exploit the property that Hd
ρ = Trace[Hρ] = E[nTHρn] if n ∼ N (0, I) is independent of J

(where the expectation is taken over n). Therefore, given a noise realization normally distributed
n, we propose to compute the vector J[Dσ(x

t)]n instead of the matrix J[Dσ(x
t)]. The expectation

over n is calculated using a Monte-Carlo method, i.e. generate K i.i.d. N (0, I) samples vectors,
estimate the divergence for each vector and obtain the global divergence by averaging:

Trace
[
J[Dσ(x

t)]
]
=

1

m

K∑

j=1

nT
j

(
Dσ(x

t + ǫnj)−Dσ(x
t)

ǫ

)
(30)

Given the vectorized image lying in a high dimensional space, it has been empirically observed
[50] that we can accurately approximate the expected value using only a single random sample,
i.e. K = 1. In all the simulations we have used the Monte Carlo method with K = 1.

Definition 6.2. (Block partial leverage scores) Given B ∈ R
NdNp×Nv and the scalar Hd

ρ ∈ R+

defined in ( 29), let {li}NdNp

i=1 the leverage scores of the matrix B. The block partial leverage score
for the i-th block is defined as

l
Hd

ρ

i (B) =

iNd∑

j=(i−1)Nd+1

lj , i = 1, . . . , Np (31)

and the non-uniform sampling distribution is pi =
l
Hd

ρ
i (B)

∑Np
j=1

l
Hd

ρ
i (B)

, i = 1, . . . , Np

Theorem 6.1 ([37]). Given B ∈ R
NdNp×Nv , Hd

ρ ∈ R+ and ǫ ∈ (0, 1), let {lH
d
ρ

i (B)}Np

i=1 be the block

partial leverage scores and pi
l
Hd

ρ
i (B)

∑Np
j=1

l
Hd

ρ
i (B)

Let construct the sketch G = SB, as in ( 17), by sampling
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the i-th block of G with probability pi and rescaling it by 1√
pi
. If s ≥ 4

(∑Np

i=1 l
Hd

ρ

i (B)
)
log 4Nv

δǫ2
with

probability at least 1− δ, then the following condition holds

∥∥(GTSTSG+Hd
ρ

)
−
(
GTG+Hd

ρ

)∥∥2 ≤ ǫ
∥∥GTG+Hd

ρ

∥∥2 (32)

Corollary 6.1. Let focus on the case of one-row sampling, d = 1 and Hρ a scaled identity matrix,
Hρ = mγI. Let define G = UΣVT =

∑m

i=1 σiuiv
T
i as the singular value decomposition. Then,

the leverage score is

l
γ
i = gi(G

TG+mγI)†gi =
n∑

j=1

σ2
j

σ2
j +mγ

u2
ij, i = 1, . . . , m (33)

and therefore, the effective n-dimension, neff , is much smaller than n

neff (G) =

m∑

i=1

l
γ
i =

n∑

j=1

σ2
j

σ2
j +mγ

≪ n (34)

if mγ is larger than the majority of singular values of GTG.

It is worth noting we have used the notion of SVD to show the property of the dimensionality
reduction but using the SVD is not practical for calculating the leverage scores. Instead, we will
show how to use fast matrix decomposition through the FFT.

6.1 Convolutional operators

In principle, computing the leverage scores for a generic matrix A has a time complexity O(mn2)
equivalent to doing an SVD which is computationally demanding in high dimensions. We focus
our attention on convolutional operator which can be used to describe the structure of the physical
CT operator. We show that the convolutional structure allows to compute efficiently the leverage
scores which determines the non-uniform random sub-sampling of the Hessian.

Definition 6.3. (CT Convolutional operator) The continuous 2D X-ray Transform is a convolu-
tional linear operator R : L2(R

2) → L2([0, π)× R) which computes the line integral of a function
in the 2D input space. The Fourier central slice Theorem states that R = F−1

γ Ωω−1F where F is
the 2D Fourier transform (FT), Ω is the coordinate transform operator from Cartesian to polar
coordinates, ω−1 = (γ cos δ, γ sin δ) and F−1

γ is the inverse 1D FT with respect to γ.

The output of the linear operator is the sinogram that is a function of δ and the polar space
variable ρ. Both R and RTR are normal-convolutional operators since in the frequency domain

RTR = FH(Ωω−1)T (F−1
γ )HF−1

γ Ωω−1F (a)
= FH |detJω|F

(b)
= FHD

(
1

|ρ|

)
F (35)

where (a) follows from Fγ being an unitary operator and (b) derives from the back-projection CT

filter formulation where Jω defines the Jacobian of ω and D
(

1
|ρ|

)
is the diagonal polar Fourier

space operator. From the continuous to the discrete domain, the Fourier-based Radon transform
can be written as [51, 52]:

R = F−1
γ Ω

ω
−1F (36)
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where F is the 2D unitary discrete Fourier transform operator which takes as input the image
µ of dimensions I × I, with I =

√
Nv. The operator Ω

ω
−1 performs a discretized version of

the continuous coordinate transform in (6.3) which outputs a matrix of polar coordinate samples
that are equally-spaced along ρ at the discrete locations {i∆ρ} for i = − I

2
, . . . , I

2
− 1. The non-

uniform FFT operator Ω
ω

−1F takes as input the I× I input image matrix and output a matrix of
dimensions Nd×Np; Fγ applies the 1D unitary discrete Fourier transform (DFT) matrix separately
to each of the radial lines vectors of dimension Ndec and it is defined as the Kronecker product
between a 1D DFT matrix F1 and the identity matrix, i.e. Fγ = F1 ⊗ INp

. Therefore, the final
output is a vector of dimensions J = Nd ·Np where Nd is the number of detectors and Np is the
number of angles (or number of projections) in agreement with (3).

7 Numerical simulations

We have preliminary tested the Denoising-IHS algorithm using the following parameters and ge-
ometry; the X-ray spectrum is obtained by using the Spektr [53] with tube potential E = 80
keV and initial average photon flux of I0 = 2 · 103. Figure 1 shows the spectrum in the energy
interval [0, 150] keV of the five discrete selected energy bins. In Figure 1(a), the mass attenuation
coefficients of the materials to be estimated are shown; it is interesting to note that the two dis-
tinct K-edges associated with the iodine and gadolinium appear at energies corresponding to two
distinct energy bins as shown in Figure 1(b).
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Figure 1: (a) Mass attenuation coefficients of iodine, gadolinium and water as a function of energy
and (b) energy spectra of x-ray photons interacting in detector for different energy bins.

To generate the multichannel projections, we use the ASTRA-toolbox [49] to implement the
forward operator associated with a fan-beam CT geometry; the distance from the source to the
detector is 45 cm, the source to object distance is 31 cm and the detector cell size is 50 µm. The
pixel resolution of the reconstructed image is 256 × 256 and the data is simulated on a double
grid of 512 × 512 to avoid the inverse crime, the number of projection angles is set to 360 and
the Poisson distributed noise has been added to the projection data. Figure 2(a) shows the plot
of the probabilities of sampling each projection according to the leverage score metric. This plot
is obtained by calculating exactly the leverage score of the ASTRA operator offline using the
power method. Many projections have a very low score and this shows that a random one-by-one
sampling would lose an important quantity of information or it would require to run the algorithm
on a number of samples of the order of the projection’s dimension.
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Figure 2: (a) Leverage scores probabilities on the projection up to 180◦ angles and (b) zoom on
the structure of the detectors block leverage scores.
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Figure 3: (a) Ground truth phantom with 3 materials: water, iodine, gadolinium, (b) qualita-
tive materials estimation with the proposed Denoising-IHS algorithm, (c) qualitative materials
estimation with algorithm [14] with non-adaptive edge-preserving hyperbola regularizer.
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Instead, the block sampling procedure takes advantage, by averaging, of this block structure of the
leverage scores induced by the CT operator as depicted in Figure 2(b) where each vertical red line
corresponds to an adjacent angle and the inner point coincides with the detector array elements.
Although this plot represents the exact sampling probabilities, for computational constraint the
algorithm estimates these probabilities by exploiting the spectral decomposition of the ASTRA
operator through (36).

We have tested the proposed algorithm on a synthetic phantom composed of three basis ma-
terials, water, iodine and gadolinium. The geometric shape of the 2D phantom is build used the
model number 4 of the TomoPhantom Matlab software [54] containing three materials, water,
iodine and gadolinium. The phantom is constituted of different circles with increasing diameter
as shown in Figure 3(a). As denoiser-based regularizer Dσ, we have used the implementation
of the U-Net [55] trained on a large set of 1000 images obtained by rotating and placing in dif-
ferent position the circles that are included in the test image. Furthermore, we have used the
Autograd software in pytorch to compute the Jacobian-vector product of the U-Net denoiser [56].
The Hessian block sub-sampling for the Denoising-IHS was set to s = m

3
. Figure 3(b) shows the

quantitative reconstruction of the three materials while Figure 3(c) reports the results obtained
using the multi-material framework (OS-PWSQS) proposed in [14] which considers a model-based
optimization with an edge-preserving hyperbola regularizer. By comparing the images for each
materials, it is possible to clearly note how the the Denoising-IHS approach is able to separate the
each material and to reduces the noise in the reconstruction, as can be seen in particular for the
water and iodine. The iodine image in figure 3(c) indicates that algorithm [14] does not manage
to fully separate the iodine and gadolinium materials.
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Figure 4: (a) Relative solution error comparison between the algorithm [14] and the proposed
Denoising-IHS algorithm and (b) relative solution error comparison between full Hessian and the
proposed Denoising-IHS algorithm.

Figure 4(a) shows the comparison between the root-mean-square error (RMSE), i.e.
√

1
N
(x− x∗)

of the vector x containing the concatenation of the estimated materials respect to the ground truth
x∗ between the OS-PWSQS algorithm and the proposed algorithm. The solution achieved by the
two algorithms is different because the cost function, both data fidelity term and regularizer, that
OS-PWSQS [14] aims at minimizing is different from (11). By analyzing Figure 4(a), it is possible
to highlight that the Denoising-IHS algorithm achieves a more accurate solution. Looking in detail
at the blue curve, it is possible to note some local plateaus with sudden reduction of the error and
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this is in agreement with the fact that in the outer loop the divergence of the denoiser is calculated
to update the ridge leverage scores (29) which has a cost equivalent of applying the denoiser as
stated in (30). Furthermore, Figure 4(b) shows the comparison in objective function between the
convergence plot (semi-log) in dB of the Denoising-IHS algorithm and the solver which consider
the full Hessian of the data loss at each iteration. This plot highlights how the strategy for block
sub-sampling of the Hessian leads to a noticeable reduction in computation (almost 2.2 times)
while both reach a similar minimum value in the cost function. We can analyze that at early
iterations when the estimate is inaccurate both algorithms have similar accuracy/computation
trade-off, while going further the Newton solver with full Hessian requires higher computation per
iteration and overall it converges close to the Denoising-IHS solution but with increased compu-
tational time. From Figure 4(b) the time reduction is slightly less compared to the measurement
sub-sampling rate and this could be anticipated since the ASTRA operator is not exactly linear
in the number of measurements and the Denoising-IHS requires an additional denoising step at
each outer iteration for the sampling probabilities update.

The following numerical test considers a more structured dataset, derived from the Adult
Reference Computational Phantom (ICRP Publication 110, 2009), which is a segmented image of
defined chemical composition to represent real tissues [57]. Figure 5(a) shows two slices selected
for testing through the pelvis with image resolution 137× 299 with a display window of [0, 2].
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Figure 5: (a) Testing slices of the pelvis both with a display window [0, 2], (b) reconstruction of
the bone material of the two testing images with Denoising-IHS, (c) estimation of the fat material
for the two testing images with Denoising-IHS with display window [0, 0.15].
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Figure 5(b) reports the qualitative estimation of the bone component in the testing images; it
is possible to note how the Denoising-IHS algorithm is able to tackle the contours of the bone
precisely in both images. Figure 5(c) shows the qualitative estimation of the fat component in the
testing images; in this case the Denoising-IHS algorithm manages to estimate correctly most of
the complicated structure in the pelvis with some spurious pixels missing.
To evaluate the quantitative estimation, Figure 6 reports the normalized oracle mass attenuation
of the fat and the estimated one with Denoising-IHS related to longitudinal section at pixel y = 80
of the first test image.
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Figure 6: Ground truth values of the fat component for the longitudinal section of pixel 80 and
the Denoising-IHS estimate.

This plot confirms that the proposed algorithm is able to accurately estimate the mass attenuation
with and error which is less than 3%. In particular, Table 1 reports the root mean square error
(RMSE) for different materials compared to the oracle ground truth.

Algorithms Bone Fat Air

Denoising-IHS 0.031% 0.053% 0.025%
OS-PWSQS 0.041% 0.082% 0.035%

Table 1: RMSE comparison of the material images using Denoising-IHS and OS-PWSQS.

8 Preliminary Experimental Results

We have assessed the algorithm with a real acquisition using a photon counting detector CT
scanner depicted in Figure 7(a) with a specimen in (b) containing cylinders of iodine and PMMA
at different concentrations. The geometry is cone beam with source to axis of rotation distance of
8.1 cm and source to origin distance of 11.4 cm.

Figure 8(a) show the decrease of normalized cost function for the Denoising-IHS subsamplig
case and full Hessian; it is worth noting the reduction in computation although is slower compared
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Figure 7: (a) Scanner setup and (b) support specimen for the cylinders of different materials.

to the results achieved in the numerical simulations. Table (2) and Figures 8(b-c) show the
quantitative and qualitative error in concentration of the iodine.

Table 2: Iodine concentration error

Ground truth [mg/ml] estimated
8 8.15
16 15.72

Figure 8: Error in objective function and reconstruction of the cylinders phantoms.

9 Conclusion

We propose a preliminary study for an efficient second order optimization method, Denoising-IHS,
for multi-material decomposition in spectral CT which combines dimensionality reduction through
Hessian matrix non-uniform random sub-sampling and regularization by denoising. A practical
procedure for efficiently calculating the non-uniform sampling probabilities is shown which involves
Fourier spectral approximation for estimating the ridge leverage scores. Furthermore, we analyze
the CG solver which does not require the computation of the full Jacobian of the denoiser but
only directional derivatives with a substantial reduction in computation. This problem is tested
on numerical spectral CT simulations with Poisson noise model. We evaluate the convergence of
the algorithm and we are able to show improvements both in terms of qualitative and quanti-
tative accuracy compared to state-of-the-art algorithms. Furthermore, we show reduction in the
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computational complexity respect to the Newton method involving the full Hessian matrix of the
loss function. Further analysis to assess the proposed framework on more complex phantom with
experimental acquisitions will be conducted together with a tighter analysis on the lower bounds
for the dimensional reduction that it is possible to theoretically achieve and an analysis of the
robustness of the algorithm to training sample dimension.
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A Convergence Analysis

Recalling the definition of the function g(x) = f(x) + ρν(x) that we aim at minimizing as in
(11) where we hide for simplicity the dependency over y, we use the denotation H̄(x) = ∇2g(x)
to define the full Hessian, i.e. the one that would be obtained without block sub-sampling, and
Ht(xt) the block sub-sampled Hessian defined in (19). We assume the following conditions

Assumption A.1. The Hessian of the cost function g(x) is Lipschitz continuous, therefore there
is there exists a constant L ≥ 0 such that

‖H̄(w)− H̄(z)‖ ≤ L‖w − z‖, ∀w, z ∈ R
n (37)

Assumption A.2. For any set St with |St| = s, there is a positive constant such that

λmin(H
t(xt))I � Ht(xt) � λmax(H

t(xt))I (38)

Assuming H̄(xt) the Hessian that would be obtained without block sub-sampling, the error compared
to the Hessian obtained by data-loss term sketching is bounded according to the following condition

‖Ht(xt)− H̄(xt)‖ ≤ ǫ‖H̄(xt)‖ (39)

Given ( 39) we have

λmin(H
t(xt)) ≥ λmin(H̄(xt))− ǫλmax(H̄(xt)) =

(
1− ǫκ(H̄(xt))

)
λmin(H̄(xt))

≥ (1− 2ǫκ) λmin(H̄(xt)) = λb(H̄(xt)) (40)

where κ is the condition number of the problem.

We consider the expected error between the oracle solution and the estimate at iteration t

where the expectation is taken over the random block selection at iteration t

Et

∥∥xt+1 − x∗
∥∥ = Et

∥∥xt + pt
r − x∗

∥∥ (41)

≤ Et

∥∥∥xt −
[
Ht(xt)

]−1∇g(xt)− x∗

∥∥∥
︸ ︷︷ ︸

1st term

+Et

∥∥∥pt
r +

[
Ht(xt)

]−1∇g(xt)
∥∥∥

︸ ︷︷ ︸
2nd term19



Regarding the 1st term in (41), we have that

Et

∥∥∥xt −
[
Ht(xt)

]−1∇g(xt)− x∗

∥∥∥ = Et

∥∥∥
[
Ht(xt)

]−1 (
Ht(xt)(xt − x∗)−∇g(xt)

)∥∥∥

≤ 1

λb(H̄(xt))
Et

∥∥(Ht(xt)− H̄(xt)
)
(xt − x∗) + H̄(xt)(xt − x∗)−∇g(xt)

∥∥

≤ 1

λb(H̄(xt))


Et

∥∥(Ht(xt)− H̄(xt)
)
(xt − x∗)

∥∥
︸ ︷︷ ︸

term (a)

+
∥∥∇2g(xt)(xt − x∗)−∇g(xt)

∥∥
︸ ︷︷ ︸

term (b)




The term (a) represents the error due to the Hessian sketching and using condition (39) we have

Et

∥∥(Ht(xt)− H̄(xt)
)
(xt − x∗)

∥∥ ≤ ǫ‖H̄(xt)‖‖xt − x∗‖ = ǫλmax

(
H̄(xt)

)
‖xt − x∗‖

For the term (b), using the Lipschitz continuity of the Hessian (37) we have

∥∥∇2g(xt)(xt − x∗)−∇g(xt)
∥∥ ≤ ‖xt − x∗‖

∫ 1

t=0

‖∇2g(xt)−∇2g(xt + t(x∗ − xt))dt‖

≤ ‖xt − x∗‖2
∫ 1

t=0

Ltdt =
L

2
‖xt − x∗‖2 (42)

Therefore, the overall 1st term is bounded by

Et

∥∥∥xt −
[
Ht(xt)

]−1∇g(xt)− x∗

∥∥∥ ≤ 1

(1− 2ǫκ)λmin(H̄(xt))

(
L

2
‖xt − x∗‖2+

+ ǫλmax(H̄(xt))‖xt − x∗‖
)

(43)

The 2nd term in (41) represents the residual error after r CG iterations. The convergence rate of
the CG method varies at every iteration depending on the spectrum {λ1 ≤ λ2 ≤, . . . ,≤ λn} of the
positive definite matrix Ht(xt). After r steps of the CG method applied to the linear system in
(21), the iterate ptr satisfies

∥∥pt
r − pt

∗
∥∥2
C
≤ 2
√

κ(C)

(√
κ(C)− 1√
κ(C) + 1

)r ∥∥pt
0 − pt

∗
∥∥2
C
, C = Ht(xt) (44)

where pt
∗ indicates the exact solution and ‖x‖2

C
, xTCx. Using the CG convergence rate (44)

and assuming pt
0 = 0 and pt

∗ = −
[
H̄(xt)

]−1∇g(xt), we obtain

∥∥∥pt
r +

[
Ht(xt)

]−1∇g(xt)
∥∥∥
Ht(xt)

≤ 2
√
κ(C)

(√
κ(C)− 1√
κ(C) + 1

)r ∥∥∥
[
Ht(xt)

]−1∇g(xt)
∥∥∥
Ht(xt)

(45)

Given ‖a‖2
C
≤ ‖b‖2

C
, we can obtain the following relationship in terms of unweighted norm

λ1‖a‖2 ≤ aTCa ≤ bTCb ≤ λn‖b‖2 ⇒ ‖a‖ ≤
√

κ(C)‖b‖ ≤ √
κ‖b‖ (46)
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By substituting the (45) in the 2nd term of (41), it results

Et

∥∥∥pt
r +

[
Ht(xt)

]−1∇g(xt)
∥∥∥ ≤ 2

√
κ(C)

(√
κ(C)− 1√
κ(C) + 1

)r

Et

∥∥∥
[
Ht(xt)

]−1∇g(xt)
∥∥∥

≤ 2
√
κ(C)

(√
κ(C)− 1√
κ(C) + 1

)r

∇g(xt)Et

∥∥∥
[
Ht(xt)

]−1
∥∥∥

≤ 2L
√

κ(C)

µ

(√
κ(C)− 1√
κ(C) + 1

)r ∥∥xt − x∗
∥∥ (47)

By substituting the expressions (43) and (47) in (41), we have

Et

∥∥xt+1 − x∗
∥∥ ≤ 1

(1− 2ǫκ) λmin(H̄(xt))

(
L

2
‖xt − x∗‖2+

+ ǫλmax(H̄(xt))‖xt − x∗‖
)
+ 2
√
κ(C)

(√
κ(C)− 1√
κ(C) + 1

)
∥∥xt − x∗

∥∥

≤ L

2 (1− 2ǫκ) λmin(H̄(xt))

∥∥xt − x∗
∥∥2 +

+
ǫλmax(H̄(xt))

2 (1− 2ǫκ) λmin(H̄(xt))

∥∥xt − x∗
∥∥+ 2

√
κ(C)

(√
κ(C)− 1√
κ(C) + 1

)
∥∥xt − x∗

∥∥
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[5] S. Kappler, D. Niederlöhner, K. Stierstorfer, and T. Flohr, “Contrast-enhancement, image
noise, and dual-energy simulations for quantum-counting clinical CT,” in Medical Imaging:
Physics of Medical Imaging. Proceedings of SPIE, 2010.

[6] R. E. Alvarez, “Estimator for photon counting energy selective X-ray imaging with multibin
pulse height analysis,” Medical Physics, vol. 38, no. 5, pp. 2324–2334, 2011.

[7] G. Vilches-Freixas, J. M. Létang, N. Ducros, and S. Rit, “Optimization of dual-energy CT ac-
quisitions for proton therapy using projection-based decomposition,” Medical Physics, vol. 44,
no. 9, pp. 4548–4558, 2017.

21



[8] C. Maaß, M. Baer, and M. Kachelrieß, “Image-based dual energy CT using optimized pre-
correction functions: A practical new approach of material decomposition in image domain,”
Medical Physics, vol. 36, no. 8, pp. 3818–3829, 2009.

[9] H. Gao, H. Yu, S. Osher, and G. Wang, “Multi-energy CT based on a prior rank, intensity
and sparsity model (PRISM),” Inverse Problems, vol. 27, p. 115012, 2011.

[10] K. Kim, J. C. Ye, W. Worstell, J. Ouyang, Y. Rakvongthai, G. Fakhri, and Q. Li, “Sparse-
view spectral CT reconstruction using spectral patch-based low-rank penalty,” IEEE Trans.
on Medical Imaging, vol. 34, no. 3, 2015.

[11] D. Kazantsev, J. S. Jørgensen, M. S. Andersen, W. Lionheart, P. D. Lee, and P. J. Withers,
“Joint image reconstruction method with correlative multi-channel prior for X-ray spectral
computed tomography,” Inverse Problems, vol. 34, p. 064001, 2018.

[12] W. Wu, D. Hu, K. An, S. Wang, and F. Luo, “A high-quality photon-counting CT technique
based on weight adaptive total-variation and image-spectral tensor factorization for small
animals imaging,” IEEE Trans. on Instrumentation and Measurement, vol. 70, pp. 1–14,
2020.

[13] W. Wu, P. Chen, S. Wang, V. Vardhanabhuti, F. Liu, and H. Yu, “Image-domain material
decomposition for spectral CT using a generalized dictionary learning,” IEEE Trans. on
Radiation and Plasma Medical Sciences, 2020.

[14] Y. Long and J. A. Fessler, “Multi-material decomposition using statistical image reconstruc-
tion for spectral CT,” IEEE Trans. on Medical Imaging, vol. 33, no. 8, pp. 1614–1626, 2014.

[15] R. Barber, E. Y. Sidky, T. G. Schmidt, and X. Pan, “An algorithm for constrained one-step
inversion of spectral CT data,” Phys. Med. Biol, vol. 61, pp. 3784–3818, 2016.

[16] T. G. Schmidt, R. F. Barber, and E. Y. Sidky, “A spectral CT method to directly estimate
basis material maps from experimental photon-counting data,” IEEE Trans. on Medical Imag-
ing, vol. 36, no. 9, pp. 1808–1819, 2017.

[17] T. Weidinger, T. M. Buzug, T. Flohr, S. Kappler, and K. Stierstorfer, “Polychromatic iter-
ative statistical material image reconstruction for photon-counting computed tomography,”
International Journal of Biomedical Imaging, vol. 2016, pp. 1–15, 2016.

[18] K. Mechlem, S. Ehn, T. Sellerer, E. Braig, D. Münzel, F. Pfeiffer, and P. B. Noël, “Joint
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